SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1976) B32, 976

The crystal structure of *p*-chloroiodobenzene. By DOYLE BRITTON, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

(Received 3 November 1975; accepted 3 November 1975)

p-Chloroiodobenzene, C₆H₄ClI, is monoclinic, $a = 15 \cdot 772$ (23), $b = 5 \cdot 922$ (11), $c = 4 \cdot 220$ (5) Å, $\beta = 113 \cdot 64$ (10)°, space group $P2_1/a$, Z = 2. It is isomorphous with C₆H₄Cl₂, C₆H₄Br₂, and C₆H₄BrCl.

Crystalline *p*-bromochlorobenzene is disordered with chlorine and bromine crystallographically equivalent. The structure of *p*-chloroiodobenzene has been examined to see whether the greater differences in size and chemical properties between iodine and chlorine (*versus* bromine and chlorine) lead to ordering of the molecules in the crystal.

Thick needles, elongated along c, were grown by sublimation of Eastman Kodak p-chloroiodobenzene. Precession photographs showed the crystals to be monoclinic with space group $P2_1/a$ (systematic extinctions: 0k0, k = 2n + 1;

Table 1. Crystal data for p-C₆H₄XY

X V	Cl	Cl Br	Br Br	Cl
a (Å) b (Å) c (Å)	14·80 5·78 3·99	15·2 5·86 4·11	15·36 5·75 4·10	$ \begin{array}{c} 15.772 (23) \\ 5.922 (11) \\ 4.220 (5) \end{array} $
β (°) Molecular volume (Å ³) Reference	113 157 (a)	113 168 (b)	112·5 167 (c)	113.64 (10) 181 this work

(a) Croatto, Bezzi & Bua (1952), (b) Klug (1947), (c) Bezzi & Croatto (1942).

h0l, h=2n+1). Unit-cell dimensions were determined from the Bragg angles of 13 reflections measured on a Hilger– Watts automatic diffractometer, using Mo K α radiation ($\lambda = 0.7107$ Å), and are given in Table 1.

As can be seen from Table 1, the chloroiodobenzene is isomorphous with dichloro-, dibromo-, and bromochlorobenzene. The structures of all three of these molecules have been determined completely and all require the molecule to lie on a crystallographic center of symmetry. Therefore, the chloroiodobenzene must be disordered, with Cl and I atoms occupying equivalent positions at random in the crystal, in spite of the appreciable size difference between the Cl and I atoms.

This work was supported in part by the Graduate School of the University of Minnesota.

References

BEZZI, S. & CROATTO, U. (1942). Gazz. Chim. Ital. 72, 318-325.

CROATTO, U., BEZZI, S. & BUA, E. (1952). Acta Cryst. 5, 825-829.

KLUG, A. (1947). Nature, Lond. 160, 570.